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Summary
Background New evidence has emerged that plastic polymers and their chemical additives, particularly di-2-
ethylhexylphthalate (DEHP), contribute to cardiovascular disease (CVD). Phthalates are commonly used in the
production of plastic materials and have been linked to increased oxidative stress, metabolic dysfunction, and
cardiovascular disease. Estimates of phthalate-attributable cardiovascular mortality have been made for the US, but
global estimates are needed to inform ongoing negotiations of a Global Plastics Treaty.

Methods Cardiovascular mortality data from the Institute for Health Metrics and Evaluation (IHME) and regional
DEHP exposure estimates from several sources were used to estimate burden. Hazard ratios of CV mortality were
calculated using published exposure estimates, and country-level cardiovascular mortality rates were used to calculate
excess deaths and years of life lost (YLL) due to DEHP exposure.

Findings In 2018, an estimated 356,238 deaths globally were attributed to DEHP exposure, representing 13.497% of
all cardiovascular deaths among individuals aged 55–64. Of these, 349,113 were attributed to the use of plastics.
Geographic disparities were evident, with South Asia and the Middle East suffering the greatest percentage of car-
diovascular deaths attributable to DEHP exposure (16.807%). The Middle East, South Asia, East Asia, and the Pacific
accounted for the largest shares of DEHP-attributable CVD deaths (73.163%). Globally, DEHP resulted in 10.473
million YLL.

Interpretation Plastics pose a significant risk to increased cardiovascular mortality, disproportionately impacting
regions which have developing plastic production sectors. The findings underscore the need for urgent global and
local regulatory interventions to kerb mortality from DEHP exposure.
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Introduction
Cardiovascular disease (CVD) has been the leading
cause of death in the United States of America (US)
since 1921,1 and in 2011, the UN formally recognised
CVD as a major global health concern.2 The decline in
CVD morbidity and mortality arguably represents one of
the major public health victories over the past fifty years.
Deaths rates from CVD have declined by 60% since
1950 and age-adjusted death rates attributable to CVD
have decreased by 4.7% from 2010 to 2020.1,3 These hard
fought gains can be credited to efforts to address key
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risk factors,4 including high blood pressure, elevated
cholesterol, obesity, unhealthy diet and physical activity,5

smoking,6 second-hand smoke exposure,7 outdoor air
pollution,8 and heavy metal exposures.9,10

Despite this effort, the epidemic of CVD remains a
global health threat that leads to premature and pre-
ventable deaths. CVD death rates have recently trended
upward, with age-standardised CVD mortality
increasing between 2015 and 2022.11 Over one billion
people are affected by CVD, which was responsible for
more than 17 million deaths in 2019—nearly one-third
ossman School of Medicine, New York, NY, USA.
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Research in context

Evidence before this study
Before undertaking this study, a comprehensive review of the
literature was conducted using several databases, including
Web of Science and PubMed. Studies that related to the
health impacts of phthalates were examined, specifically di-2-
ethylhexylphthalate (DEHP), with search terms such as
“DEHP,” “phthalates,” “cardiovascular disease,”
“cardiovascular”, “mortality,” “plastic,” and “exposure.” The
existing evidence consistently linked DEHP exposure to
metabolic disturbances, oxidative stress, and cardiovascular
events, but no global estimate of cardiovascular disease
mortality attributable to DEHP exposure had been calculated.
No pooled analyses had yet quantified the worldwide burden
of DEHP exposure on cardiovascular mortality.

Added value of this study
Our study provides, to the best of our knowledge, a previously
unknown global estimation of the burden of cardiovascular
mortality attributable to DEHP exposure. The present disease
burden model not only quantifies DEHP-related cardiovascular
deaths but also highlights significant geographic disparities,
showing that regions such as Africa, the Middle East, and
South Asia bear the highest burden of DEHP-attributable
deaths. By focussing on plastic production, consumption, and
disposal our findings demonstrate the wide-reaching public

health implications of DEHP exposure and how plastic-related
chemicals disproportionately impact countries on the Asian
continent. This study provides crucial data that can inform
regulatory interventions and global policy discussions on
plastic pollution and chemical exposure, offering new
understanding of the environmental contributions to
cardiovascular mortality.

Implications of all the available evidence
The combined evidence from this study and previous research
underscores the need for urgent global policy interventions
aimed at reducing exposure to phthalates like DEHP,
particularly in countries with high plastic production and
consumption as well as ageing populations. Our findings
reveal that plastic-related chemicals significantly contribute to
cardiovascular mortality in the 55–64 age group, highlighting
an under-recognised but critical environmental health issue.
The global burden of DEHP exposure, especially in vulnerable
populations, calls for immediate regulatory action to mitigate
these risks. Reducing phthalate exposure through regulatory
interventions could lead to a significant decrease in global
cardiovascular mortality, particularly in regions facing the
greatest burden of cardiovascular disease from DEHP. Future
research and monitoring of environmental exposures to
phthalates is needed across most of the world.

Articles

2

of all deaths worldwide.12 This reflects global population
growth and a growing ageing population, as well as
contribution from preventable metabolic behavioural
and emerging environmental risks, which pose new
global challenges in reducing CVD risk.12,13

The past decade has presented a new and previously
unrecognised risk for CVD: exposure to plastic polymers
and their chemical additives. Of particular concern are
phthalates, particularly one class of phthalates di-2-
ethylhexylphthalate (DEHP), which are used to soften
polyvinylchloride (PVC) plastics. DEHP is used in this
disease burden model to estimate cardiovascular (CV)
burden because it is one of the most widely used and
studied phthalates, with extensive human exposure
leading to robust data from regional biomonitoring
surveys and epidemiological studies in comparison to
other phthalates.14 In addition to data availability, strong
epidemiological and mechanistic evidence links DEHP
to adverse CV outcomes. DEHP and other phthalates are
antiandrogens,15 increase expression of peroxisome-
proliferator activated receptors crucial for lipid and
carbohydrate metabolism,16–21 and are oxidative
stressors.22,23 Cohort studies have identified phthalates to
be associated with weight gain,24 incident diabetes,25,26

accelerated atherosclerosis,27–30 and CVD mortality.31

Studies of human specimens have also detected micro-
and nano plastics (MNP), which possibly act as physical
irritants to the body, similar to the physical effects of
particulate matter in air,32 and enhance delivery of
phthalates and other toxic chemicals, just as nano-
particles are widely used for targeted delivery of phar-
maceuticals to cells for direct benefit.33 MNPs can also
accumulate phthalates and other chemicals not
routinely used in their manufacture.34–37 A recent
observational cohort of endarterectomy patients identi-
fied increases in the composite of myocardial infarction,
stroke and death with presence of microplastics
measured in carotid artery plaque,38 though challenges
in MNP research remain, including distinguishing true
microplastics from artefacts, isolating their effects from
diffused polymers, and determining the impact of par-
ticle size.

These studies highlight an evolving cardiovascular
risk factor landscape that present new global health
challenges but also offer opportunities for improving
the prevention of CVD globally. By recognising
emerging environmental risk factors posed by plastic
exposure and reducing the production and consumption
of plastic, new interventions have successfully reduced
phthalate exposure in low-as well as high-income sub-
populations.39,40 In the US, a previous investigation
estimated that 50,200 CVD deaths were attributed
to 2008 levels of DEHP.41 The concentrations of
four DEHP metabolites mono (2-ethylhexyl)
phthalate (MEHP), mono (2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), mono (2-ethyl-5-carboxypentyl)
www.thelancet.com Vol ▪ ▪, 2025
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phthalate (MECPP), and mono (2-ethyl-5-oxohexyl)
phthalate (MEOHP) have been detected almost ubiqui-
tously in all countries around the world, regardless of
characteristics of the region.14

In February 2022, the UN Environment Assembly
announced plans to negotiate an internationally legal
binding instrument to end plastic pollution.42 As nego-
tiations have ensued, petrochemical-producing coun-
tries have resisted efforts to kerb plastic production and
consumption, arguing that there are few health effects
of chemicals used in plastic. To inform ongoing nego-
tiations, this study therefore leveraged existing data on
phthalate exposure to create a global disease burden
model which estimates the country-specific burden of
CVD mortality linked to DEHP, and specifically those
attributable to plastic production and consumption.
Methods
Study population
All countries recognised by the World Bank were orig-
inally considered by this analysis. To be included in the
analytic sample for this study, it was necessary that
values for World Bank 2018 population estimates for
55–64-year-olds and Institute for Health Metrics and
Evaluation (IHME) cardiovascular mortality rates be
publicly available for each country. If these data were not
available for a country they were excluded. A list of all
countries or territories included (n = 200) as well as
their UN standardised geographic regions, CV
mortality rates, and population size can be found in
Supplement 1.

Measurement/estimation of phthalate metabolites
Four DEHP metabolites of interest were identified:
MEHP, MEHHP, MEOHP, and MECPP. This analysis
relied on estimates from a previous investigation on
global phthalate exposures. Concentrations of phthalate
exposure for 5 global areas were estimated in Acevedo
et al.,14 which estimated DEHP metabolite concentra-
tions in areas of the world that suffer from lack of
centralised or publicly available data on chemical expo-
sures. The team performed a systematic review and
meta-analysis including data from studies on phthalate
exposures from different regions across the globe
broadly covering Australia, Eastern Asia and the Pacific,
The Middle East and South Asia, Latin America, and
Africa. The researchers utilised a mixed-effects regres-
sion model to examine phthalate metabolite concentra-
tions across time. A regression model weighted for
study-specific standard error was used to quantify the
change in phthalate metabolite concentrations after
controlling for potential modifiers such as age group,
region, and pregnancy status. The analysis was further
stratified by region to investigate the regional trends in
phthalate metabolite exposure over time. The team
further conducted a covariate-adjusted meta-regression
www.thelancet.com Vol ▪ ▪, 2025
by including the quadratic term for time (time2) in the
models. The results of this analysis were pooled mean
concentration and 95% CI for each phthalate metabolite
by region, and projected mean and standard deviation of
phthalate metabolite concentrations across five periods,
including 2008. These projected mean concentrations
were produced for the 10th, 25th, 50th, 75th, and 90th
percentiles of exposure, and values from 2008 were used
in the present analysis. Details of analytic procedures
used to estimate phthalate exposure percentiles in 2008
can be found in the methods of Acevedo et al., 2025.14 In
this systematic review, there was not sufficient evidence
to calculate regional concentrations of MEHP for
Australia. For the development of the present disease
burden model, MEHP concentrations for Australia were
therefore estimated by calculating the ratio of average
global MEOHP concentrations to global MEHP con-
centrations excluding Australia and then multiplying
this ratio by the concentration of MEOHP in Australia to
impute regional estimates for each population quantile.

Based on the UN statistics division standardised
country geographic regions,43 the percentiles of phtha-
late concentrations from Acevedo et al., 2025 were
assigned to eligible countries included in this analysis.14

Per the UN classification, Latin America and the
Caribbean were classified as Latin America. Northern
Africa and Sub-Saharan Africa per UN classification was
classified as Africa. Central Asia, Eastern Asia, and
South-Eastern Asia per UN classification were classified
as Eastern Asia and the Pacific (Asia-EPA). Southern
Asia & Western Asia per UN classification were classi-
fied as the Middle East and South Asia (Asia-MESA).
Lastly, Australia was considered its own region while
New Zealand, and countries in the sub-regions of Mel-
anesia, Micronesia, and Polynesia were classified as
Asia-EPA.

For those regions which do have robust population
surveys that allow for measurements of estimates of
DEHP metabolites, DEHP exposure data was collected
directly from study records. MEHP, MEHHP, MEOHP,
and MECPP concentrations for Canada, the US, Europe,
and any associated territories were sourced from the
Canadian Health Measures Survey (CHMS) Bio-
monitoring Dashboard,44 the USA’s National Health and
Nutrition Examination Survey (NHANES),45 and the
European Consortium to Perform Human Bio-
monitoring on a European Scale (COPHES)/DEMO-
COPHES (its pilot study of feasibility) project’s
European Human Biomonitoring Dashboard, respec-
tively.46 When analysing biomonitoring survey data,
exposure data for all age groups, both sexes, and unad-
justed for creatinine and specific gravity was utilised.
NHANES is publicly available, and study staff utilised
laboratory data from the 2007–2008 cycle available on
the Centres for Disease Control and Prevention National
Centre for Health Statistics NHANES webpage. Data
from COPHES/DEMCOPHES had to be requested
3
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from the European Institute for Technological
Research’s European Human Biomonitoring Dash-
board, as not all data was available on public webpages.
COPHES/DEMCOPHES data from 2008 was requested.
CHMS data from cycle 1 (2007–2009) was utilised.
When analysing the data from European countries,
available median values and standard deviations from
country-level samples were utilised to calculate a stan-
dard error-weighted regression model in order to esti-
mate regional metabolite concentrations, a method
adapted from previous efforts to incorporate heteroge-
neity of effects.47 Once beta coefficients were obtained,
concentration estimates at the 10th, 25th, 50th, 75th,
and 95th percentiles were computed using the inverse
of the normal cumulative distribution for the mean and
standard deviation between 2007 and 2009. Measures to
obtain percentiles of DEHP exposure in Europe were
completed in STATA (version 16.0). Data on all metab-
olites and percentiles of exposure in 2008 from the
Canadian Biomonitoring Dashboard was requested
from Health Canada. The CHMS did not gather data on
MECPP in cycle 1. MECPP concentrations for Canada
was therefore estimated by calculating the ratio of
average global MEOHP concentrations to global MECPP
concentrations excluding Canada and then multiplying
this ratio by the concentration of MEOHP in Canada to
impute regional estimates for each population quantile.
For the United States, standard NHANES sample
weights were utilised to calculate the percentiles of
exposure in the US population in 2008. Estimated and
exact DEHP metabolite concentrations for each world
region can be found in Supplement 2.

Estimating hazard for cardiovascular mortality due
to DEHP
Throughout all calculations, non-rounded (exact)
numbers were utilised. Tables and Supplemental
Materials reported in this analysis report rounded
values for simplicity.

In methodological alignment with previous studies,31

exposures were assessed for the year 2008, and mortality
outcomes were evaluated for the year 2018, resulting in
a ten-year lag between exposure measurement and the
observed outcome. To estimate the number of CVD-
related excess mortality and number of years of life
lost in 2018 due to phthalate exposure in 2008, it was
first necessary to calculate the hazard ratio of CV mor-
tality due to phthalate exposure.

Once global estimates of concentrations of four
phthalate metabolites were obtained, each compound’s
concentration was divided by its molecular weight (g/
mol) and then added together. Then to weight all con-
centrations to MEHP, this summed molar mass was
further multiplied by the molecular weight of MEHP to
create an MEHP equivalent ng/mL. In the end, this
value (concentration in nanogrammes of metabolite per
millilitre) was further divided by the molecular weight of
MEHP to calculate the final molar concentration value
of nanomole (nmol) of phthalate metabolite per mL.

To calculate hazard ratios for CV mortality across
different quantiles, values were extrapolated from Tra-
sande et al., 2022.31 This study linked phthalate metab-
olite measurements in urine from the US National
Health and Nutrition Examination Survey 2001–2010
data for 55–64 year olds to the National Death Index
through the end of 2015, to assess hazard ratios for
mortality observed ten years after the exposure period.
In multivariable models in this analysis, the hazard ratio
for continuously measured, log transformed DEHP
metabolite concentration was 1.10 (95% CI 1.03–1.19),
with a median exposure level in the first tertile of 0.05
(HR of 1.0, as the reference group). No effects were
therefore assumed below 0.05 μmol/L.

To calculate the HR for CV mortality due to
phthalate exposure different quantiles, if the concen-
tration of a given metabolite was less than a threshold
of 0.05 ng per mL, this hazard ratio was set to 1, and
effect was therefore not estimated for values lower
than this threshold. If the calculated value exceeded
0.05, the hazard ratio for CV mortality for each
phthalate exposure quantile in each region was esti-
mated:

HRRegion,Quantile = 1.10
ln(nmol per mLRegion,Quantile

0.05 )
Estimated hazard ratios for ten-year CV mortality for

each world region can be found in Supplement 3.

Mortality data
IHME Global Burden of Disease (GBD) country-level
CV mortality rates (CVMR) were used to estimate
baseline CV mortality rates in each country in this
analysis.48 To obtain the dataset, the IHME global health
index VizHub results tool was searched for “GBD Esti-
mate: Cause of Death or Injury,” “Measure: Deaths and
YLLs (Years of Life Lost),” “Cause: Cardiovascular Dis-
eases,” “Location: Select all countries and territories,”
“Age: 55–59 years and 60–64 years,” “Sex: Both,” and
“Year: 2021”. This dataset includes estimated number of
deaths of 55–64-year-olds from CVD in 2018 in each
country. For this analysis, the mean of rates per 100,000
in 55–69-year-olds and 60–64-year-olds were calculated
to arrive at one CV mortality rate per country. Details on
data input sources and information on how the IHME
produces population estimates can be found in docu-
mentation for the Global Burden of Diseases study.48

Country and territory population estimates from the
World Bank were used to estimate the population size of
each country.49 In order to obtain this dataset, the World
Bank Group online Population estimates and pro-
jections databank was searched, and fields specified
were “Database: World Development Indicators,”
“Country: All Countries,” “Series: Population ages
www.thelancet.com Vol ▪ ▪, 2025
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55–59, female, Population ages 55–59, male, Popula-
tion 60–64, female, and Population 60–64, male,” and
“Time: 2018”. This dataset includes population esti-
mates for each country, disaggregated by gender and
age group (55–59 and 60–64) for 2018. Values for both
sexes and age groups were added together by country
or territory to compute a country or territory-specific
population count of 55–64-year-olds. The age group
was restricted to 55–64 years to maintain consistency
with the primary investigation on which this study is
based,31 ensuring alignment with the data used to
extrapolate the Hazard Ratio calculation in the present
analysis.

Calculation of population attributable deaths due to DEHP
exposure
To calculate the excess CV mortality rate due to phtha-
late exposure for each country or territory, the popula-
tion attributable fraction was used, which is defined as
the proportional increase in the number of deaths with
an increase in the risk factor or exposure:50

excess CVMR

= ((HRregion,quantile−1) /HRregion,quantile) ∗ CVMRcountry

HR was considered to be the hazard ratio for CV
mortality due to phthalate exposure for each world region
for which phthalate exposures for 2008 was estimated, and
CVMR was considered to be the baseline IHME-estimated
country-specific CV mortality for 55–64-year-olds.

Next, baseline number of CVD-related deaths &
excess number of CV-related deaths (phthalate-attribut-
able deaths) in each country were calculated through the
following procedure:

Baseline number of CV deaths

=CVMRcountry ∗ Population estimatecountry

Excess deaths= excess CVMRcountry,quantile

∗ (Population estimate ∗ quantile size)
The population estimates used for these calculations

were derived from the World Bank’s 2018 data for in-
dividuals aged 55–64. Quantiles represented the distri-
bution of the population at specific levels of phthalate
exposure, enabling hazard ratios to be applied selectively
to specific population segments based on their exposure
quantile. The lowest 10th of the population in phthalate
exposure was considered a control group and values
were not calculated for this percentile of the population.
In these analyses, the 10th percentile phthalate exposure
was applied to the 11th–25th percentile of country-level
populations, 25th to the 26–50th, 50th to the 51–75th,
75th to the 76th–95th, and 95th to the 96th–100th
percentile of country-level populations. Once number of
www.thelancet.com Vol ▪ ▪, 2025
excess deaths was calculated for each percentile, this
total was summed to result in the total number of deaths
across the population in entirety.

Lastly, percent excess mortality due to DEHP was
calculated:

% excess mortality

= ( excess number of CV deathscountry,quantile
baseline number of CV deathscountry,quantile

) ∗ 100%

Baseline number of deaths was standardised to the
aforementioned quantiles, with percent excess mortality
for any given exposure group being calculated from the
same percent of the overall population.

Calculation of excess cardiovascular-related years of life lost
due to phthalate exposure
YLL (premature mortality measured in years) was
calculated by using the IHME’s years life lost to CVD
measures. The IHME calculates cause-specific YLL by
multiplying CV deaths by the standard life expectancy at
the age of death in a given area, where this life expec-
tancy is derived from a life table that records the lowest
observed mortality rate at each age in populations
exceeding 5 million. For the purposes of this analysis,
excess YLL due to phthalate exposure (phthalate attrib-
utable YLL) was calculated in the following manner:

Phthalate YLLcountry,quantile =% excess CVMRcountry,quantile

∗ CVD YLLcountry ∗ size of quantile

Percent increase in years of life lost was calculated as
the following:

% excess YLL

= ( excess number of YLLcountry,quantile
Baseline number of CVr YLLcountry,quantile

) ∗ 100%

Estimates of attributable mortality due to plastics
In order to quantify attributable mortality due to the
percentage of DEHP exposure that come from plastics,
the attributable phthalate deaths and YLL for each
quantile of exposure were multiplied by the approximate
percentage of DEHP that come from plastics, estimated
by Trasande et al., 2024.41 In this investigation, a plastics-
related fraction of 98% (sensitivity analyses applied a
range of 96–99%) was utilised for DEHP metabolites.

Worked example: estimation of excess
cardiovascular (CV) deaths in India due to
phthalate exposure
In this working example, the number of excess cardio-
vascular (CV) deaths in India was calculated using avail-
able data for the 95th quantile of phthalate exposure.
5
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Attributable deaths (Step 1). IHME cardiovascular mortality
data
• CV mortality for ages 55–59: 490.966305 per 100,000
individuals, which equates to a mortality rate of
0.00490966305.

• CV mortality for ages 60–64: 696.0470472 per
100,000 individuals, equating to a mortality rate of
0.006960470472.

• Mean CV mortality rate: (0.00490966305 +
0.006960470472)/2 = 0.00593506676

Attributable deaths (Step 2). Hazard ratios
First, the concentration at the 95th percentile for each
phthalate was processed as per section 2.3 to get a final
nmol per mL DEHP metabolite concentration:

(30.01437278.34 + 62.47058
294.34 + 39.99131

292.33 + 55.91116
308.33 ) ∗ 278.34

278.34
= 0.63821

The hazard ratio was calculated as 1.274713 using
the formula below:

HR= 1.10
ln(0.638210.05 )

Attributable deaths (Step 3). Calculation of excess
cardiovascular mortality rate (CVMR)
The excess CVMR due to phthalate exposure was
calculated as follows:

excess CVMR= ((1.274713−1)
1.274713

) ∗ 0.00593506676

= 0.00127906438

Attributable deaths Step 4. Population data
Using the World Bank population estimates, the total
population in India in 2008 for both age groups (55–64)
and genders was calculated as 103,846,506.

Attributable deaths (Step 5). Baseline cardiovascular deaths
The baseline number of CV deaths was calculated using
the mean CV mortality rate:

Baseline CV Deaths

= 0.00593506676 × 103, 846, 506 = 616, 335.945903

Additionally, 5% of this baseline death was calculated
in order to calculate the expected number of CV deaths
above the 95th percentile:

616, 335.945903 × 0.05 = 30816.79729
Finally, the excess number of CV deaths due to
phthalate exposure was determined as follows:

Excess CV deaths

= 0.00127906438 × (103, 846, 506 × 0.05) = 6, 641.3183406

Calculating attributable YLL

Phthalate attributable YLLcountry,quantile
= 0.215510230089221 ∗ 17280928.49 ∗ 0.05

= 186, 210.843752

Sensitivity analyses
To assess the impact of multiple variables in modelling
on the results obtained, a series of sensitivity analyses
were performed. Alternate estimates of excess YLL due
to DEHP exposure were computed using an alternate
dataset of the World Health Organization life expectancy
at 60,51 which is generic to the entire population and not
specific to those with CVD. Data was downloaded
directly from the World Health Organization Global
Health Observatory Indicators: Life expectancy at 60
(years) webpage. Both genders and all countries were
included in this dataset.

In order to run sensitivity on model selection for the
generation of estimated phthalate concentrations in
global regions without robust population estimates of
exposure, alongside the linear estimations, percentiles
of phthalate exposure derived from the quadratic model
used by Acevedo et al., 2025 were applied to estimate
metabolite concentrations.14

Finally, the range of plastic attributable fractions for
DEHP exposure obtained by Trasande et al., 2024 was
utilised to calculate a range for the number of deaths
and years life lost inclusive of the true plastics related
fraction of disease burden.41

Ethics
This investigation is a global burden model which only
uses summary-level data; therefore, no ethical
approval for human subject research was required.
The principal investigator signed a New York Uni-
versity School of Medicine Institutional Review Board
attestation form documenting the nature of the
research activity conducted as research not involving
humans.

Statistics
All analytical methods used in this disease burden
model have been described in detail. No inferential
statistical comparisons were conducted, and only
descriptive statistics were calculated and reported.
www.thelancet.com Vol ▪ ▪, 2025
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Role of funders
Funding sources for this study had no role in study
design; collection, analysis, and interpretation of data;
writing of the report; and decision to submit the paper
for publication.
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Results
From the main estimates calculated in this analysis, a
total of 356,238 deaths due to DEHP exposure were
identified (Table 1), of which over 349,000 were plastic-
attributable deaths. Exposure to MEHP, MEHHP,
MEOHP, and MECPP contributed 13.497% of all CV
deaths in 2018 worldwide, with plastics contributing
98% of these deaths, comprising 13.227% of all CV
deaths globally. Sensitivity analyses revealed the actual
range of DEHP-attributable mortality to likely be be-
tween 356,238 and 356,602 deaths (13.497–13.511% of
CV deaths globally), with 349,113–349,469 deaths
(13.227–13.241% of CV deaths globally) due to plastic
production, consumption, and waste in 2008.

DEHP exposures in 2008 varied greatly among
world region (Supplement 2). In the case of MEHP,
the Middle East and South Asia led in exposure with a
percentile weighted average exposure of 19.460 μmol/
L, while the lowest region in terms of exposure,
Europe, had a weighted-average of only 3.243 μmol/L,
representing an approximate 6-fold decrease. The
highest MEHHP exposure was again found in the
Middle East and South Asia, with an average exposure
of 46.107 μmol/L, in this case closely followed by Af-
rica, with an average exposure of 43.199 μmol/L. The
lowest exposure levels for MEHHP were found in
Europe (18.413 μmol/L). A similar pattern is seen in
MEOHP, where levels are highest in the Middle East
and South Asia (26.193 μmol/L) and lowest in Europe
(11.935 μmol/L). A slight variation in concentration of
MECPP was found, with the highest concentration of
65.452 μmol/L in Africa outstripping all other regions,
while the lowest levels were again in Europe
(15.304 μmol/L). Overall, across all four DEHP me-
tabolites, the Middle East, South Asia, and Africa bore
the most exposure burden, and Europe consistently
had comparably low exposures. A detailed breakdown
of regional estimated exposures to each chemical and
methods for calculating percentile weighted average
exposures can be found in Supplement 2.

Geographic disparities in DEHP-attributable CV
mortality were notable, with the Middle East and South
Asia accounting for 41.678–41.699% of all DEHP-
related CV deaths (148,474–148,699 deaths) world-
wide (Table 1, Supplement 4). East Asia and the Pacific
also experienced notable mortality, with an estimated
excess 111,871–112,160 deaths due to DEHP exposure
(Table 1, Supplement 4), accounting for 31.399–
31.485% of all DEHP-related CV deaths. This suggests
that approximately 73.098–73.163% of all global deaths
www.thelancet.com Vol ▪ ▪, 2025 7
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from DEHP in 2018 occurred in the continent of Asia
(Fig. 1a). These trends were driven by these regions’
large population sizes within the 55–64-year-old age
group. South Asia and the Middle East had the highest
percentage of CV deaths attributable to DEHP exposure
(an average of 16.807%), followed by Latin America
(13.500%), East Asia and the Pacific (13.001%), Canada
(12.669%), Australia (12.144%), and Africa (11.844%),
indicating a disproportionate burden of disease on these
areas (Table 1, Fig. 1b). In comparison, lower percent
attributable mortality was found in USA (10.421%) and
Europe (8.374%) (Table 1, Fig. 1b). With a range of
around 8 percentage points, there is a large disparity in
cardiovascular burden due to differences in DEHP
exposure between different areas of the world. Overall,
regions containing a higher proportion of populations
from low- and middle-income countries bear the brunt
of this burden while regions containing more
high-income countries face less exposure to DEHP, and
thus less attributable mortality. However, this trend is
not seen universally and each regions’ profile of expo-
sure between population percentiles and population size
a

b

Fig. 1: Aggregate DEHP-attributable mortality world maps among 200 co
of global excess CV deaths, or “global share” of mortality burden in e
proportion of global shares of death that occur in any one region. Plot lab
attributable cardiovascular mortality across all world regions. The legend
mortality (%). Average percent attributable cardiovascular mortality for ea
deaths in the given world region by the total number of expected bas
multiplying by 100.
of 55–64-year-olds determines the level of risk of excess
CV mortality.

Within regions, countries with large ageing pop-
ulations such as India, China, and Indonesia experi-
enced the highest numbers of DEHP-attributable
deaths, with estimated mortality figures of 103,587,
60,937, and 19,761, respectively. Complete country-level
estimates for DEHP-attributable deaths and YLL can be
found in Supplement 5. However, when adjusting for
population size, even very populous countries within
this age group differ greatly in burden depending on
region. From the aforementioned countries alone,
China (with 157,232,453 individuals aged 55–64 in
2018) experienced 60,937 deaths due to DEHP expo-
sure, while India, with a population of approximately
103,846,506 people aged 55–64 (approximately 66% the
size of China’s) experienced 103,587 deaths, approxi-
mately 70% more than China (Supplement 1,
Supplement 5).

Globally, DEHP exposure resulted in a total of over
10.473 million YLL among individuals aged 55–64. The
distribution of YLL followed the same patterns as overall
Proportion of global CV deaths

0.1

0.2

0.3

0.4

Percent attributable CV mortality

10

12

14

16

untries and eight world regions. Plot labelled a. represents proportion
ach continent. The legend gradient represents the global range of
elled b. represents the average disease burden map for percent DEHP-
gradient represents the global range of average percent attributable
ch region was calculated by dividing the total number of attributable
eline cardiovascular deaths per the IHME in that world region, and
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mortality. Asia-MESA and Asia-EPA exhibited the highest
YLL totals, with India, China, and Indonesia bearing the
greatest burden in this age group, losing 2,904,389,
1,935,961, and 587,073 years of life, respectively, due to
phthalate exposure (Supplement 5). Regionally, the Middle
East and South Asia lost 4,170,822–4,177,123 years of life,
4,087,406–4,093,581 of which can be attributable to plas-
tics (Table 1, Supplement 4). East Asia and the Pacific lost
3,447,061–3,441,245 years of life due to DEHP in 2018
(Table 1, Supplement 4), 3,378,120–3,372,420 of which can
be attributable to plastics.

In addition to these aggregate findings, when regions
were broken into percentiles of exposure, patterns of
disparity became clearer. These patterns over percentiles
are visualised in Fig. 2. In certain regions, there is a
greater disparity in percent attributable mortality be-
tween the lowest and highest quantiles of exposure. In
the USA, the difference between the 95th quantile of
exposure and the 10th quantile of exposure is 30.541
percentage points, followed by Africa (28.579%
0
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25 5
Quantile of expos
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Fig. 2: Percent change in attributable cardiovascular mortality due to DEH
represent the change in the percent attributable cardiovascular mortality
exposed population increases. Only linear estimates of percent change in
USA, Canada, and Europe. The smoothed curves illustrate illustrates th
population and the percentage attributable mortality across various regi
localised regression to capture non-linear trends in the data, enabling
quantiles of exposure in the population, while the y-axis shows the corr
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difference), Canada (19.886%), Europe (18.205%),
Australia (6.377%), Latin America (5.286%), the Middle
East and South Asia (5.176%), and East Asia and the
Pacific (4.139%). Those in the highest exposure quantile
in the USA and Africa experience a much higher burden
of attributable CV mortality (30.720 and 28.579%) than
other regions, while those at the lowest exposure
quantile experience barely any additional burden due to
DEHP exposure, indicating that burden inequality is
high in these regions. In other regions such as the
Middle East and South Asia, East Asia and the Pacific,
and Latin America, those even at the lowest levels of
exposure experience burden due to DEHP (16.375,
12.668, and 12.659 percent attributable mortality,
respectively, with only 3–4% difference attributable
mortality when comparing the lowest and highest
exposure percentiles) which indicates that those across
all exposure levels are more consistently burdened.

Sensitivity analyses using quadratic exposure models
yielded higher mortality estimates compared to the
0 75
ure in the population

−MESA Canada
Europe

Latin America
USA

P exposure by quantile in across eight world regions. Individual plots
due to DEHP-metabolite exposure for each region, as quantile of the
attributable mortality are shown alongside regional estimates for the
e smoothed relationships between the quantile of exposure in the
ons using LOESS regression. The LOESS smoothing method applies
a detailed depiction of regional variations. The x-axis denotes the
esponding percentage of attributable mortality.
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primary disease burden model. Aggregate-level findings
are presented in Supplement 4, with detailed country-
level results available in Supplement 6. Quadratic
models projected an increase of approximately 0.1% in
deaths and YLLs, along with a 0.014% increase in the
global percent attributable mortality, relative to the main
estimates (Supplement 4; Supplement 6). In contrast,
sensitivity analysis using WHO estimates for YLL at age
60 produced lower results than the main model
(Supplement 7), estimating 6.7 million global excess
YLLs from DEHP exposure based on linear models,
compared to 10.5 million YLLs in the main analysis.
Discussion
In the present disease burden model, it was identified
that a total of just over 356,000 global deaths, or
13.497% of worldwide CV mortality in 2018 among 55–
64-year-olds was attributable to plastics exposure. The
effects of DEHP metabolite exposures on CVD out-
comes were disproportionately experienced by countries
in the Middle East and South Asia as well as East Asia
and the Pacific, posing significant health risk that must
be addressed by both local and global governmental
bodies. This study found that the South Asian and
Middle Eastern regions had higher exposure to DEHP
metabolites compared to other regions. However, within
Africa and the USA, there were the highest levels of
disparity in exposure among different percentiles of the
population, with the highest percentiles of exposure
experiencing the greatest percent attributable mortality
difference. Although phthalate exposure varied greatly
between world regions, it was found ubiquitously and
contributed to CV mortality in every region on earth.
The burden was heightened, not only in countries with
developing plastics industries and waste management
systems, but also in countries with ageing populations.
CVD is clearly associated with older age,13 and as
exposure to phthalates exacerbate these conditions,25–31

this is of high concern for countries with large
numbers of older adults. In such regions, the public
health burden of CVD linked to phthalates could be
particularly severe, amplifying existing health disparities
and placing additional strain on healthcare systems.

Industries pursue the production of plastic for profit,
and the adverse consequences are not widely considered
in economic tradeoffs about the societally optimal
amount. As a proxy for the social cost of a year of life lost
(SCYLL) many investigators use a $50,000 measure for
the US.52 Some researchers extrapolate to elsewhere on
the globe from this value using a purchasing power
parity correction,53 but this implies a difference in the
value of human life based upon place. We have there-
fore not executed such an extrapolation here but present
a range of estimates of the potential societal costs of the
YLL identified in this manuscript for consideration. If
all the YLLs are valued equally at $50,000 each, then the
social costs of plastic-induced mortality would total $510
billion. A more conservative valuation of $1000/YLL
would place the social cost at $10.2 billion. An alterna-
tive to SCYLL is using the value of a statistical life (VSL)
to estimate the economic cost of lives lost due to DEHP
exposure. Based on the U.S. Department of Trans-
portation’s 2018 definition where VSL is valued at $10.5
million,54 the total cost for 356,238 deaths would amount
to $3.74 trillion. Alternatively, using the U.S. Environ-
mental Protection Agency’s 2006 value of mortality risk
reduction at $7.4 million,55 the estimated cost would be
$2.6 trillion.

The implications of our findings are particularly
relevant for countries with high levels of industrialisa-
tion and plastic consumption. This analysis aligns with
global trends in plastics production and regulation. For
example, India has a rapidly expanding plastics industry,
and faces substantial phthalate exposure risks due to
plastic waste and the extensive use of commonly DEHP-
inclusive plastics, such as PVC in manufacturing of
consumer goods.56 In 2018, China was a major importer
of plastic waste,57 and its plastics industry produced over
29% of global plastics in 2018.58 A recent 2024 study
found that India emitted the highest volume of plastic
emissions, totalling 9.3 million metric tons per year. The
regions with the highest plastic emissions globally were
identified as Southern Asia, Sub-Saharan Africa, and
Southeastern Asia,59 findings that suggest consistency
with the global disease burden model. While this anal-
ysis does not investigate the origins of exposure within
each country and region, higher exposure levels to
DEHP may attributed to more industrial manufacturing
of plastics, less regulation in products, high rates of
plastic product use, and large amounts of plastic waste
with underdeveloped waste management sectors.

Findings from this disease burden model also align
with expectations when considering the regulatory
landscape in the 2008–2018 period. Globally, phthalate
regulations targeting DEHP have primarily been
implemented on a country-by-country or small regional
basis. Prior to 2008, regulations were scarce, with only a
few leading countries taking significant action. Japan
instituted phthalate restrictions early, introducing a
prohibition in 2003 on products containing DEHP
within the food packaging and childcare sectors,
reflecting Japan’s early commitment to reducing expo-
sure to harmful substances.60 The EU implemented
regulations designating DEHP as a restricted phthalate
and placing bans on certain quantities of the chemical in
childcare and food sectors as early as 2006.61–63 Between
2008 and 2018, Canada enforced limits on DEHP in
children’s toys and products related to childcare
domestically in 1999 and banned items containing over
0.1% concentration by weight of DEHP in childcare
sectors,64 the USA exacted a prohibition of DEHP
childcare articles and toys containing more than 0.1%
DEHP,65 and Australia put in place bans over toxic levels
www.thelancet.com Vol ▪ ▪, 2025
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of DEHP in certain products.66 Since 2018, the Chinese
government reports it has banned 24 categories of
foreign waste including plastics waste,67 while India has
incorporated DEHP restrictions into its food packaging
sector,68 but these regulations have been very recent.

These recent regulatory measures reflect a growing
awareness of the harmful effects of DEHP. However, it
is notable that many of these regulations were not in
place at the time of data acquisition for the present study
and their effect is not reflected in our results. Despite
the increase in regulatory actions, inconsistencies
persist across countries, industries, and specific chem-
icals. Many countries to this day do not have compre-
hensive regulations. Collaboration among nations to
harmonise regulatory standards is essential for reducing
global phthalate exposure. Developing economies face
the dual burden of expanding their economic and in-
dustrial development while also managing waste from
industrialised nations. Efforts to regulate major pol-
luters should be supported, with an equitable focus on
the immense plastic waste generated by post-industrial
nations and now disposed of in developing economies,
which undoubtedly contributes to exposure to DEHP in
these nations.69

This disease burden model provides key insights
about the global burden to humans of phthalate expo-
sure, including the disproportionate impact on regions
with developing plastics sectors. It highlights the urgent
need for both global and local policy interventions and
offers evidence to support targeted regulations in
countries with high phthalate exposures. To mitigate the
impact of phthalates on CV mortality, multi-modal in-
terventions are necessary at both regional and global
levels. Limiting exposure to DEHP should involve
regulation such as banning or restricting DEHP-use in
certain products or improving labelling requirements,
improvement of waste management practices, promot-
ing changes in consumer habits, and increasing public
awareness about the risks of exposure to DEHP.

This study also provides evidence to support regula-
tions and initiatives targeting those with the highest
percentiles of exposure in highly burdened regions, as
these groups account for the vast majority of excess
deaths. In addition, while previous investigations have
been limited in scope due to lack of public data from
national biomonitoring surveys in many parts of the
world outside of the United States,45 Canada,44 and
Europe,46 this study is strengthened by the unique in-
clusion of phthalate exposure measures estimated for
every region on earth.14 Given that the greatest health
effects from phthalates have been found to be in regions
without robust national surveys on chemical exposures
and in countries with rapidly developing industrial
sectors, it is crucial that these regions are included in
future investigations.

The present study has limitations that warrant
consideration. To estimate the global health effects due
www.thelancet.com Vol ▪ ▪, 2025
to plastics, it was necessary to rely on regional estimates
from meta-analysis rather than country-specific chemi-
cal exposure data. In this meta-analysis, certain regions,
such as Africa, had fewer studies available on phtha-
lates, which may result in higher error of estimated
values. For example, while Australia had estimates for
three DEHP metabolites, it did not have any available
estimates for MEHP, and thus concentrations for this
MEHP was estimated from other metabolites. Even
among regions with public data available from bio-
monitoring surveys such as Europe, there are limita-
tions. The COPHES/DEMOCOPHES project only
sampled from certain European countries, and some
studies excluding adult age groups, limiting the gen-
eralisability of their exposure measurements. Larger,
and more comprehensive studies will need to be con-
ducted by scientists within nations in these regions, and
the present study can serve as further evidence of the
importance of funding national research on phthalate
exposures.

In addition, heterogeneity of data sources warrants
discussion. To the extent possible, the IHME sources
data from databases using territorial composition defi-
nitions within UN 2008 boundaries. Because IHME
compiles data from several different sources it should be
noted that there may be slight variations in territorial
composition between datasets, which may contribute to
increased variance from true population measures for
reported health estimates. Additionally, as the IHME
integrates data from multiple national and international
sources, discrepancies may arise when comparing
IHME-compiled estimates with studies conducted
within individual countries. For instance, in our previ-
ous analysis using NHANES and CDC Wide-ranging
Online Data for Epidemiologic Research (WONDER),31

the estimated number of attributable deaths differed
from the results of this disease burden model. This
discrepancy is mostly driven by the higher CV mortality
rate reported in WONDER (965.2 per 100,000)
compared to the IHME-derived more conservative esti-
mate (232.49 per 100,000), as well as differences in the
reference years—our previous analysis estimated mor-
tality for 2014, whereas this disease burden model re-
flects data for 2018. Similarly, sensitivity analyses in our
own analysis using quadratic models produced higher
estimates than the main, linear model, suggesting that
this disease burden model may be conservative in its
estimates of the cardiovascular mortality attributable to
DEHP exposure. These findings imply that the true
burden could be even greater than initially estimated.
Alternatively, a sensitivity analysis utilising WHO data
for YLL yielded a lower estimate of 6.7 million YLLs,
compared to the main model. This discrepancy reflects
methodological differences between the WHO and the
Institute for Health Metrics and Evaluation (IHME),
particularly in their data sources and definitions and
calculations of YLL.48,51 Overall, given that various
11
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studies and institutions apply different approaches to
estimating exposure and mortality, comparative disease
burden models using multiple data sources are essen-
tial. This analysis involved harmonising data from
various sources, leading to inherent heterogeneity in the
variability of statistics as there are difference sources of
uncertainty when working with global data from mul-
tiple sources. This burden model is the initial analysis of
its kind as is subject to recalculation for reliability.

The present study was also limited in its investiga-
tion of only four DEHP metabolites. Other plastic-
related chemicals such as bisphenols, DEHP
replacements, and microplastics have been suggested by
previous investigations to be associated with increased
CV mortality.38,70 These were not accounted for in
calculation of attributable mortality, potentially under-
estimating the overall mortality burden due to plastic
exposure. Additionally, plastic production and con-
sumption are also known to contribute to climate
change,71 and associated CV risks,72 which were not
considered in the present calculations.

It is additionally important to acknowledge the un-
certainties in accurately quantifying the relationship
between DEHP exposure and CVD mortality. While
estimates in this model are primarily based on findings
from a single study from the US,41 they are supported by
laboratory research findings and epidemiological
studies. For example, an Italian study documented as-
sociations between PVC microplastics, which
commonly contain phthalates, and adverse CV out-
comes, including heart attack, strokes, and mortality.38

However, this single country analysis was not
confirmed in another industrialising country to extrap-
olate exposure-response relationships, which may have
different dietary habits, cigarette smoke exposure,
physical activity and other cardiovascular risks. More
meta-analyses on a global scale are needed to confirm
these findings. Additionally, sex reporting for this paper
was not possible as exposure data is not disaggregated
on sex. Lastly, as this study utilised aggregate data at the
country level, it is impossible to incorporate potential
individual-level confounders which may bias the
magnitude of attributable mortality. Within country
variation in socio-economic status and stress may cause
variant rates of CVD, with those being the most exposed
to DEHP also having the highest baseline CV mortality
rates.

This study uncovers a substantial global health
burden attributable to DEHP exposure. DEHP exposure
in 2008 was responsible for more than 13% of CV
deaths among 55–64-year-olds worldwide in 2018, with
the most pronounced effects observed in the Middle
East and South Asia. These data highlight critical global
disparities in loss of life due to plastics pollution. The
large mortality burden disproportionately borne in Asia
and Africa, which are simultaneously experiencing
growth in plastics consumption and production, should
raise alarm in nations in these regions. These findings
underscore the critical need for enhanced regulatory
measures and international cooperation to mitigate the
health impacts of phthalates, particularly in regions
characterised by high levels of industrialisation and
plastic consumption. While this global disease burden
model cannot make claims about causality, and policy-
makers may choose to dismiss the larger body of evi-
dence documenting negative health effects of
phthalates,73,74 this model provides feasible estimates of
those risks to CV mortality. Data from human exposure
studies are being used to assess the health impacts of
plastic use worldwide, informing decisions about the
trade-offs involved in reducing plastic production and
consumption. This model provides concrete estimates
of only a small fraction of those risks, emphasising the
urgent need for comprehensive strategies to address the
health impacts of plastic exposure.
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