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A local-to-global emissions inventory of 
macroplastic pollution

Joshua W. Cottom1, Ed Cook1 & Costas A. Velis1 ✉

Negotiations for a global treaty on plastic pollution1 will shape future policies on 
plastics production, use and waste management. Its parties will benefit from a 
high-resolution baseline of waste flows and plastic emission sources to enable 
identification of pollution hotspots and their causes2. Nationally aggregated waste 
management data can be distributed to smaller scales to identify generalized points 
of plastic accumulation and source phenomena3–11. However, it is challenging to use 
this type of spatial allocation to assess the conditions under which emissions take 
place12,13. Here we develop a global macroplastic pollution emissions inventory by 
combining conceptual modelling of emission mechanisms with measurable activity 
data. We define emissions as materials that have moved from the managed or 
mismanaged system (controlled or contained state) to the unmanaged system 
(uncontrolled or uncontained state—the environment). Using machine learning and 
probabilistic material flow analysis, we identify emission hotspots across 50,702 
municipalities worldwide from five land-based plastic waste emission sources. We 
estimate global plastic waste emissions at 52.1 [48.3–56.3] million metric tonnes (Mt) 
per year, with approximately 57% wt. and 43% wt. open burned and unburned debris, 
respectively. Littering is the largest emission source in the Global North, whereas 
uncollected waste is the dominant emissions source across the Global South. We 
suggest that our findings can help inform treaty negotiations and develop national 
and sub-national waste management action plans and source inventories.

Plastic pollution is a global challenge requiring immediate action owing 
its environmental persistence and negative impact on ecosystems14,  
infrastructure15, society and the economy16. The importance of this 
burgeoning issue has recently been recognized by the ratification of 
a United Nations draft resolution to create an internationally legally 
binding instrument to end plastic pollution1, hereafter the ‘Plastics 
Treaty’. A global plastic pollution emissions inventory has been sug-
gested as being critical to the success of the Plastics Treaty17 and 
such inventories have already been applied in the climate change 
field18 and as early evidence for a global legally binding agreement on  
mercury19,20—eventually the Minamata Convention21.

Previous efforts to model global plastic waste emissions and move-
ment through the environment have demonstrated the scale of the 
issue, highlighting large macroplastic emissions from countries with 
extensive coastlines, large populations and insufficient waste manage-
ment3–11. Yet there is a growing understanding that a much higher 
(sub-national) resolution is required, which identifies plastic pollu-
tion hotspots and accounts for specific local solid waste management, 
behavioural, cultural and socio-economic conditions12,17. We believe 
that the very concept of ‘emissions’ also requires clarification, owing 
to the complexity of the phenomena (Methods and Extended Data 
Fig. 1). We use it here for clarity rather than the loosely defined terms of 
‘leakage’ and ‘mismanaged waste’ described elsewhere22 and we delib-
erately avoid the term ‘release’ suggested by the United Nations Eco-
nomic Commission for Europe (UNECE)23, which could imply deliberate 

activity. We define plastic emissions as material that has moved from the 
managed or mismanaged systems (in which waste is subject to a form of 
control, however basic; contained state) to the unmanaged system (the 
environment; uncontained state) with no control. We further classify 
emissions according to two categories: (1) debris (physical particles 
>5 mm) and (2) open burning (mass combusted in open uncontrolled 
fires). For clarification, open burning emissions relate to the mass of 
material that is subjected to the practice, rather than the gaseous, 
liquid or solid matter emitted by the process. Further definitions and 
scope are in Supplementary Information Section S.2.

Mapping and quantification of plastic waste material flows is hin-
dered by the lack of sufficiently detailed and up-to-date records of waste 
management practices and quantities at a local level24, which prevents 
the complete assessment of emissions from human systems25. Although 
coordinated work is underway to remedy this data paucity24, a measur-
able baseline is urgently required to inform Plastics Treaty obligations17. 
As with greenhouse gas18 or mercury19,20 emissions inventories, this 
baseline would enable a more rational distribution of overseas devel-
opment assistance, empower policymakers with scarce resources to 
develop evidence-based specialized national and sub-national strat-
egies, action plans and targets25, and create a strong evidential basis 
for the reorganization of material systems that have been the focus 
of Plastics Treaty proposals26 and negotiations27. Therefore, we cre-
ated a macroplastic emissions inventory using a new methodology 
to quantify emissions for 50,702 municipality-level administrations 
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from five land-based sources: (1) uncollected waste; (2) littering; (3) 
collection system; (4) uncontrolled disposal; and (5) rejects from sort-
ing and reprocessing (Fig. 1). Unmeasured data were predicted using 
machine learning and flows were mapped using probabilistic material 
flow analysis (MFA) for the year 2020. See Methods and Supplementary 
Information for detailed methodology.

Global emissions of plastic waste
We estimate that 52.1 Mt year−1 [48.3–56.3] of macroplastic waste were 
emitted into the unmanaged system in 2020, representing 21% (wt.) of 
all the municipal plastic waste generated (251.7 Mt year−1 [233.1–272.4]) 
globally (statistics reported are the arithmetic mean of all iterations—
simulation runs; the 5th and 95th percentiles are in square brackets). 
Approximately 43% (wt.) (22.2 Mt year−1 [20.6–24.0]) is unburned 
‘debris’, meaning that it is no longer subject to any form of manage-
ment or direct control and is at risk of transport across land and into 
the aquatic environment.

Most plastic pollution models do not report emissions in a way that 
is comparable with the present work, instead reporting emissions 
to ‘the aquatic environment’3, ‘aquatic ecosystems’6, ‘the ocean’8,28, 
‘mismanaged plastic waste’5 and ‘riverine outflows’29. However, two 
studies report comparable data. Ryberg et al.11 estimated macroplastic 
debris emissions to the environment at 6.2 Mt year−1 (confidence inter-
val (CI): 2.0–20.4) in 2015. The upper end of the CI is within the range 
of our 5th percentile for debris emissions but the central estimate is 

approximately 3.5 times lower than our mean. The categories reported 
by Ryberg et al.11 include sea-based, industrial and construction sources, 
which are all outside the scope of our model. Removing these would 
reduce their central estimate to 4.9 Mt year−1, 4.5 times lower than our 
mean estimate. The sum of ‘terrestrial’ and ‘aquatic’ emissions esti-
mated by Lau et al.9 for 2016 was 29 Mt (95% CI: 22–39). This estimate 
includes microplastics and material emitted at sea but is otherwise 
congruent with our debris emissions category. Although the aver-
age reported by Lau et al.9 is approximately 23% higher than our mean 
estimate, the lower CI is approximately the same as our mean debris 
emissions.

Our model improves on earlier works and provides new information 
in five ways: (1) in this model, we used a bottom-up approach rather 
than regional10 and archetypal9 averages distributed to finer resolu-
tion (top-down approach); (2) our finer resolution accounts for spatial 
heterogeneity in sub-national waste management data; (3) we modelled 
emissions from five separate downstream sources rather than the single 
homogenous source used in other models3–8,28—‘mismanaged (plastic) 
waste’22, an umbrella term that encompasses a range of insufficiencies 
in waste management12; (4) our definition of ‘emission’ includes waste 
that escapes from ‘dumpsites’24 (defined in Methods) but excludes that 
retained within them because it is mostly buried beneath the waste 
mass30 and poses a low risk of being blown or washed into the unman-
aged system31. Only the ‘working face’ of these sites contains material 
at risk of transmission through the action of wind and surface water 
runoff32 (Supplementary Information Section S.8.9). Conversely, it is 

Obtain, clean and harmonize 
municipal-level solid waste 
management data 

Predict waste management
data across all global 
municipalities using 
machine learning

2

Use probabilistic material flow 
analysis to quantify waste 
flows for every municipality

3

Aggregate emissions to 
national, regional and global 
levels to create emissions 
inventory

5

Correction 
for rurality

Informal 
collection for 

recycling

Formal collection 
for recycling

Controlled 
disposal Uncontrolled 

disposal

Street 
sweeping

Municipal solid
waste generation

Uncollected 
waste

Collection 
system

Sorting 
rejects

Other 
recovery

Incineration

Sorting/reprocessing

Littering

Emission source

Debris emission

Open burning emission

Plastic waste �ow

Methodological process

1

Regional

Global

Country

Bottom-up
aggregation

Municipality

Use sub-models to quantify emissions 
across five      emission sources using 
data on behaviour, waste management 
performance and key phenomena

4

$$
$

Fig. 1 | Methodological process flow for creation of a global plastic pollution 
emissions inventory, as part of the ‘Spatio-temporal quantification of 
plastic pollution origins and transport’ model (SPOT). Key plastic pollution 

sources and generalized waste management and circular economy flows are 
shown in this explanatory framework. Detailed materials and methods are 
available in the Supplementary Information.
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self-evident that waste that is uncollected, scattered on land or accu-
mulated in smaller ‘informal dumps’ has a much higher probability of 
being mobilized and transported across the terrestrial surface and into 
the aquatic environment; and 5) We account for the open burning of 
waste (Supplementary Information Section S.8.11), which is not spe-
cifically considered in most plastic pollution models3–8,11,28 and which 
our results indicate contributes to 57% (29.9 Mt year−1 [27.6–32.4]) of 
all plastic waste emitted, resulting in widespread risk to human health 
and the environment33. As far as we are aware, only Lau et al.9 report a 
comparable estimate of open burning of municipal solid waste plas-
tic of 49 Mt year−1 (95% CI: 40–60) for 2016, two-thirds more than our 
estimate. The reason for this difference is the method of calculation. 
Whereas Lau et al.9 used emission factors derived from expert assump-
tions published by the Intergovernmental Panel on Climate Change 
(IPCC)18 and extrapolated from Wiedinmyer et al.34, our study uses 
census and survey activity data from 44 countries (Supplementary 
Information Section S.8.11).

Plastic emission hotspots outlook
On an absolute basis, we find that plastic pollution emissions are highest 
across countries in Southern Asia, Sub-Saharan Africa and South-eastern 
Asia (Fig. 2a–c), with the largest amount (9.3 Mt year−1 [6.5–12.7]) 
emitted by India, equivalent to nearly one-fifth of global plastic emis-
sions. In contrast to previous plastic pollution models that positioned 
China as the world’s highest plastic polluter5,8, it is ranked fourth in 
our results, with emissions of 2.8 Mt year−1 [2.1–3.7], less than Nigeria 
(3.5 Mt year−1 [2.6–4.6]) and Indonesia (3.4 Mt year−1 [2.5–4.3]). This 
lower contribution to plastic emissions from China reflects our use of 
more up-to-date data35 that shows its substantial progress in adopting 
waste incineration and controlled landfill36. Conversely, India reports 
that its dumpsites (uncontrolled land disposal) outnumber sanitary 
landfills by 10:1 (ref. 37) and, despite the claim that there is a national 
collection coverage of 95%, there is evidence that official statistics do 
not include rural areas, open burning of uncollected waste or waste 
recycled by the informal sector38. This means that India’s official 
waste generation rate (approximately 0.12 kilograms per capita per 
day (kg cap−1 day−1)) is probably underestimated and waste collec-
tion overestimated. Our model corrects for flows missing in officially 
reported statistics, resulting in a waste generation rate for India of 
0.54 kg cap−1 day−1 [0.39–0.73], which is similar to and between other 
comparable estimates38–40.

Our data for India indicate a collection coverage of 81% [80–82], 
meaning that nearly 53% (wt.) [51–56] of the country’s plastic waste 
emissions (30% wt. [29–32] debris and 23% wt. [22–25] open burn-
ing) come from the 255 [241–270] million people (18% [17–19] of the 
population) whose waste is uncollected. Most of the remaining emis-
sions (38% wt. [36–40]) are as a result of open burning on dumpsites, 
in which fires are reported to be common38. Overall, we estimate that 
56.8 Mt year−1 [40.0–77.7] of municipal solid waste is open burned 
in India, of which 5.8 Mt year−1 [4.1–7.9] is plastic. This is within the 
lower end of the ranges modelled by Chaudhary et al.38 of 74.0 Mt year−1 
(uncertainty: 30–92) and Sharma et al.39 of 68 Mt year−1 (range: 45–105).

Open burning rather than intact items (debris) is the predominant 
emission type across most United Nations sub-regions, except for 
those which are predominantly in the Global North (Northern America, 
Northern Europe, Western Europe and Australia and New Zealand) and 
Sub-Saharan Africa, in which debris emissions (7.4 Mt year−1 [6.7–8.2]) 
are slightly higher than open burning emissions (5.9 Mt year−1 [5.2–6.6]) 
(Fig. 2c). This result is driven by data that indicate lower levels of open 
burning in the rural areas of low-income countries (LICs), of which there 
are many in the Sub-Saharan Africa region (Supplementary Fig. S.24d,f).

Approximately 69% (35.7 Mt year−1) of the world’s plastic waste emis-
sions come from 20 countries, of which four are LICs, nine are lower 
middle-income countries (LMCs) and seven are upper middle-income 

countries (UMCs). Despite high-income countries (HICs) having higher 
plastic waste generation rates (0.17 kg cap−1 day−1 [0.15–0.20]), none 
are ranked in the top 90 polluters, because most have 100% collec-
tion coverage and controlled disposal. Furthermore, our model-
ling accounts for the mitigating impact of street sweeping activity 
on emissions, which is greater in HICs (Supplementary Information 
Section S.8.5). We acknowledge that we may have underestimated 
plastic waste emissions from some HICs because we deliberately 
excluded plastic waste exports from our analysis. As explained in 
Supplementary Information Section S.2, plastic waste exports from 
the top ten Organisation for Economic Co-operation and Develop-
ment (OECD) exporters to non-OECD countries and Turkey have 
substantially decreased from nearly 5.4 Mt year−1 in 2017 to less than 
1.7 Mt year−1 in 2022 (ref. 41), contributing approximately 0.03 Mt year−1 
of emissions. Although this might affect some individual country 
results, the overall effect would be negligible in comparison with  
other sources.

Countries in low-income and middle-income categories have 
much lower plastic waste generation (LICs: 0.04 kg cap−1 day−1; LMCs: 
0.07 kg cap−1 day−1; UMCs: 0.10 kg cap−1 day−1). However, in contrast to 
HICs, a large proportion of it is either uncollected (LICs: 55% wt.; LMCs: 
26% wt.; UMCs: 11% wt.) or disposed of in dumpsites (uncontrolled dis-
posal) (LICs: 36% wt.; LMCs: 57% wt.; UMCs: 19% wt.). The nine countries 
that make up the Southern Asia region emit a similar amount of plastic 
waste (15.1 Mt year−1 [12.1–18.7]) to the 51 countries in Sub-Saharan 
Africa (13.3 Mt year−1 [12.0–14.7]) (Fig. 2b,c), with Nigeria contributing to 
approximately one-quarter (3.5 Mt year−1 [2.7–4.6]) of the Sub-Saharan 
African burden. Urban areas (cities, towns and semi-densely populated 
areas) account for most emissions in all regions (Fig. 2b) because of 
low rural populations (Supplementary Information Section 7.1) and 
much lower plastic waste generation. However, we acknowledge that 
notable data gaps on solid waste management in rural communities 
exist and future efforts to address plastic pollution must include these 
often overlooked communities42.

Flexible plastic debris has a higher probability of being emitted into 
the environment in the Global South compared with rigid debris (mean 
ratio 56:44), driven by its greater prevalence (waste composition) and 
its propensity for mobilization under the action of wind and surface 
water (Fig. 2d). In the Global North (for example, Northern America), 
the opposite is true (mean ratio 33:67) because rigid plastics are more 
prevalent in the waste and because emissions are driven by littering 
rather than meteorological forcing.

Per-capita emission hotspots
The contrast between absolute plastic waste emissions from the 
Global North and the Global South is stark (Fig. 3a,c). However, on a 
per-capita basis, insufficiencies in local and national waste manage-
ment systems are more apparent (Extended Data Figs. 2–6). For exam-
ple, China, the world’s fourth largest absolute emitter, is one of the 
least polluting UMCs, ranked 153 of all countries on a per-capita basis 
(1.97 kg cap−1 year−1 [1.48–2.61]), and India, the world’s largest abso-
lute emitter, is ranked 127 on a per-capita basis (6.64 kg cap−1 year−1  
[4.66–9.08]). Conversely, Russia, the world’s fifth largest emitter 
on an absolute basis, also has high emissions on a per-capita basis 
(11.71 kg cap−1 year−1 [7.80–16.17]) because it is reported to have very low 
levels of controlled disposal43,44. Many countries in Sub-Saharan Africa 
that show low absolute plastic emissions are hotspots on a per-capita 
basis (Extended Data Fig. 4). Given the anticipated population boom 
in the region45, it is conceivable that, with an average emission rate of 
12.01 kg cap−1 year−1 [10.83–13.25], Sub-Saharan Africa will become  
the world’s largest absolute source of plastic pollution within the next 
few decades.

Municipal-scale probability distributions indicate substantial uncer-
tainty within municipalities for some of our model outputs (Fig. 3b). 
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For example, the 5th and 95th percentiles of plastic emissions are 0.77–
11.87 kg cap−1 year−1 (median 3.62 kg cap−1 year−1) for Agra (India) and 
0.11–4.72 kg cap−1 year−1 (median 0.34 kg cap−1 year−1) for Maracaibo 
(Venezuela). The large ranges within many municipalities and relatively 

high kurtosis, for example, Shenzhen (42.3) and Maracaibo (19.9), are 
a consequence of our conservative application of probability density 
functions for many of the model’s input data, which have propagated 
through to the results.
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burned plastic) in Mt year−1 for the year 2020. a, Mean macroplastic emissions 
by country. Inset illustrates mean municipal-level emissions for India, from 
which the national results are calculated. Box plots show distribution of 
probabilistic material flow analysis results for the three highest macroplastic 
emitting countries in each United Nations sub-region. Box plot statistics: lower 
and upper hinges correspond to the first and third quartiles and the central line 
is the median. Whiskers extend to the data point no further than 1.5 times the 

interquartile range from the hinge, with outlier values beyond this denoted as 
dots. b, Emissions by United Nations sub-region and settlement typology54. 
Two groups of United Nations sub-regions are merged for simplicity into ‘Rest 
of Europe’ (Northern Europe, Southern Europe, Western Europe) and ‘Oceania’ 
(Polynesia, Australia and New Zealand, Melanesia, Micronesia). c, Mean emissions 
by United Nations sub-region and emission type. d, Mean proportion of 
macroplastic emissions by plastic format for the income categories of HIC and 
low-income or middle-income countries (LMIC).
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Despite the wide uncertainty within each municipality, there are 
very large differences between many of them, enough to differentiate 
the most challenging locations from the least (Fig. 3b). For example, 
median plastic emissions for Hamburg (Germany) are estimated at 
0.02 kg cap−1 year−1 [0.01–0.06] compared with Mogadishu (Somalia), 
which has almost 680 times more (13.63 kg cap−1 year−1 [4.05–36.70]). 
Such large differences demonstrate that substantial reductions in 
plastic emissions are feasible, reiterating the importance of meas-
uring sound solid waste management activity data. Continuing 
efforts to gather more reliable municipal-scale information24 for SDG 
indicator 11.6.1 will gradually improve the accuracy of our model. 
However, much more comprehensive measurement and moni-
toring is required to improve the accuracy of flows that are rarely 
measured and that have been populated here using our conceptual  
sub-models.

Sources of plastic emissions
Uncollected waste is the largest contributor to plastic pollution in 
the Global South, accounting for 68% (35.6 Mt year−1) of all plastic 
waste emissions and 85% (18.7 Mt year−1) of all debris emissions. On a 
per-capita basis, uncollected waste represents 69%, 66% and 80% (wt.) 
of emissions in UMCs, LMCs and LICs, respectively (Fig. 4b). Approxi-
mately 56% (19.9 Mt year−1 [17.8–22.3]) of emissions from uncollected 
waste come from LMCs, in which the mean collection coverage is 
74% [72–75] (Fig. 4a). Uncollected waste in LMCs accounts for 38% 
of total global plastic emissions and 51% (11.3 Mt year−1) of debris 
emissions. As far as we are aware, none of the other global plastic pol-
lution models3–8,11,28 has explicitly highlighted uncollected waste as 
the main source of plastic pollution, instead grouping it in the ‘mis-
managed waste’ category or, in one case9, together with disposal site 
debris emissions. Here we show that plastic waste emissions from 

uncontrolled land disposal sites (dumpsites), although important, 
contribute 25% (12.8 Mt year−1 [11.5–14.3]) of global plastic waste 
emissions, of which 98% (wt.) is open burned. This means that just 
0.25 Mt year−1 is emitted from land disposal sites as debris, approxi-
mately 0.4% (wt.) of plastics deposited in uncontrolled disposal sites 
worldwide. This is substantially less than has been inferred else-
where. For example, Lau et al.9 estimated that between 1% and 1.5% 
of rigid plastics and 8% and 13% of flexible and multimaterial plastics 
deposited in uncontrolled disposal sites would reach the aquatic 
environment each year. The difference is that Lau et al.9 used expert 
judgement to derive their transfer coefficients, whereas this work 
used a more detailed sub-model based on the surface area and runoff 
characteristics of dumpsites detailed in Supplementary Information  
Section S.8.9.

HICs contribute 0.3% (0.16 Mt year−1 [0.14–0.19]) of global plastic 
waste emissions. Among HICs, uncollected waste is the source of 
21% [15–27] (0.03 Mt year−1 [0.02–0.05]) of plastic waste emissions, 
just 0.06% of the global emissions burden, largely because collection 
coverage is nearly 100%. The largest source of debris emissions in HICs 
is littering (see ‘Uncollected litter’ defined in Supplementary Table S.3),  
accounting for 53% of debris emissions and 49% (0.08 Mt year−1, 
0.06 kg cap year−1) of all plastic emissions in the Global North 
(Fig. 4a,b). Of this, 0.03 Mt year−1 takes place in Northern America 
and 0.03 Mt year−1 in the Rest of Europe region (Fig. 4c), representing 
0.09 kg cap year−1 and 0.07 kg cap year−1, respectively (Fig. 4d). The 
behavioural nature of littering46 contrasts with the underlying drivers 
of other emission sources, especially those in the Global South. This is 
because, although littering is negatively correlated with waste recep-
tacle provision47, it is largely driven by the decisions of individuals46. 
By contrast, the 1.5 billion individuals whose waste is uncollected in 
the Global South have little choice but to self-manage it (defined in 
Supplementary Information Section S.4.1).
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The mismanagement of rejects from plastics sorting and repro-
cessing (recycling system) in both the Global North and the Global 
South results in 1.0 Mt year−1 [0.9–1.1] of plastic waste emissions to the 
environment. These emissions have often been the focus of attention, 
particularly in relation to the transboundary trade (exports) in waste 
plastics48. However, here we show that the emissions burden from recy-
cling macroplastic rejects is comparatively very small.

An inventory to support the treaty
The purpose of our study was to create a macroplastic pollution 
inventory method for baselining and monitoring emissions at the 
local scale, at which on-the-ground actions can be applied. Such an 
emissions inventory, explaining the mechanisms for emission from 
the waste management and societal systems, could form a basis for 
a more detailed and comprehensive assessment of possible inter-
ventions. Once macroplastics have entered the environment, they 
are technically and economically challenging to remove49 and, over 
time, will inevitably fragment into innumerable microplastics50, mak-
ing clean-up efforts even more challenging. Minimizing plastic pol-
lution at source by preventing the emission event in the first place 
must be a priority of the Plastics Treaty17 and our insight indicates that 

tackling uncollected waste would have a bigger impact than mitigat-
ing all other land-based macroplastic sources combined. Notably, we 
already have a large global workforce of informal recyclers, entrepre-
neurs who our model shows collect more than 49.8 Mt year−1 [45.1–
54.9] of waste plastics annually, much of which would otherwise  
be mismanaged.

We suggest that interventions to reduce uncollected plastic waste 
would focus on upstream material reduction to reduce waste gen-
eration and/or substantial improvement of waste collection services 
and infrastructure, and our emissions inventory sets a detailed basis 
for this. As highlighted elsewhere9,51, mitigating plastic waste emis-
sions will require a multisectoral approach that includes addressing 
insufficiencies across the lifecycle, including redesign of product 
systems, source reduction and improving recycling systems world-
wide. The plausibility of timely and at-scale deployment of such 
interventions needs to be carefully reassessed in the context of our  
new results.

The large mass of waste that is burned in open uncontrolled fires 
has not formed a central part of discussions at Plastics Treaty nego-
tiations26,27. Yet, according to our model, more plastic waste is burned 
than is emitted as debris worldwide, releasing a cocktail of potentially 
hazardous substances and climate forcing emissions, which may have 
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a substantial impact on human health and ecological systems33. An 
unintended consequence of interventions to mitigate the release of 
debris could result in an increase in emissions from open burning and 
vice versa52. Therefore, we propose that the inclusion of this phenom-
enon is a critical component of the forthcoming negotiations: clearly, 
choosing between two main forms of plastic pollution should not be  
an option.

We acknowledge that there is a dearth of robust, quality-controlled 
and verifiable waste management activity data. We have tediously 
screened, assessed, harmonized and corrected relevant data, incorpo-
rating uncertainty using a probabilistic approach. We have designed 
a conceptual framework that allows the model’s input data and struc-
ture to be continuously updated. As more quality-controlled locally 
obtained measurements from across the waste and resources system 
become available, and our understanding of release mechanisms 
improves, the model’s precision and accuracy can be ameliorated.

As with international climate change agreements53, signatories to 
the Plastics Treaty will require a method to calculate and baseline their 
plastic waste emissions so that they can compare them with others. 
Our emissions inventory enables them to carry out these estimates 
at high resolution by conceptualizing the mechanisms of emission, 
providing insights into the nature, extent and causes of plastic pol-
lution and, therefore, enabling development of evidence-based 
national and sub-national action plans to eliminate plastic in our  
environment.
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Methods

We created a macroplastic emissions inventory using a new meth-
odology to quantify emissions from land-based sources for 50,702 
municipality-level administrations55 (see Supplementary Information 
for details on the method). We define plastic emissions as material 
that has moved from the managed or mismanaged systems (in which 
waste is subject to a form of control, however basic) to the unman-
aged system (the environment) with no control. For example, open 
dumpsites, defined here as structures that contain concentrations of 
collected waste with only basic control to prevent its interaction with 
the environment, are a form of control, because most of the material 
buried beneath the waste mass is unlikely to undergo further move-
ment into the environment.

Material was mapped through 81 downstream (after-use phase) 
processes to simulate the flow of municipal solid waste through glob-
ally diverse waste management systems (Fig. 1 and Supplementary 
Information Section 4). Emissions of land-based macroplastic debris 
(physical particles >5 mm) and open burning (combustion in open 
uncontrolled fires) from municipal solid waste (defined in Supple-
mentary Information Section S.2) were quantified for flexible and rigid 
plastics (format). Activity data (the intensity of waste and resources 
recovery management activity) were obtained from four global56–59 and 
two national35,60 waste management databases. These were checked for 
errors, harmonized to a consistent basis and corrected if necessary, 
creating the first comprehensively quality controlled city-level solid 
waste management database with worldwide coverage (Supplemen-
tary Data 1). Our primary input data represent 12.2% of the 2015 global 
population, spanning each of the World Bank income categories (LICs: 
12.0%; LMCs: 11.4%; UMCs: 13.5%; HICs: 11.2%). Further discussion on 
the representativeness of our input data is presented in Supplementary 
Information Section S.6.7.

Quantile regression random forest models61 predicted data for all 
global municipalities using national and sub-national socio-economic 
indicators. Waste management, circular economy and plastic waste 
emission characteristics, variables that are not commonly mea-
sured or reported, were estimated using data from the literature or 
through the creation of new conceptual models. These newly devel-
oped ‘sub-models’ (Supplementary Information Sections S.8.2, 
S.8.3, S.8.3.4, S.8.5, S.8.5.2, S.8.8, S.8.9, S.8.11.1 and S.9.1.2) used data 
on human behaviour, material value, socio-economic development, 
population density and solid waste management performance, cre-
ating an explanatory framework through which to estimate unmea-
sured system characteristics. The use of ‘process-level sub-models’ 
to describe larger systems has recently been advocated for plastic 
pollution modelling13.

Probabilistic (Monte Carlo simulation) MFA mapped flows of munici-
pal solid waste (5,000 iterations) throughout the system (Supplemen-
tary Information Section S.4), resulting in detailed information on 
municipal solid waste and plastic waste management for each global 
municipality (Supplementary Data 5). Emissions into the unmanaged 
system, defined here as uncontained waste that is no longer subject 
to any form of management or control, were estimated for five key 
sources: (1) uncollected waste; (2) littering; (3) collection system; (4) 
uncontrolled disposal; and (5) rejects from sorting and reprocessing 
(Extended Data Fig. 1). The probabilistic MFA used probability density 
functions from two sources: (1) the results of the machine learning pre-
dictions and (2) from the secondary data collection and processing step 
detailed in Supplementary Information Section S.8. A full list of prob-
ability density functions used in our model is available in Supplemen-
tary Data 6 and the MFA equations are shown in Supplementary Data 2.

These flows and their associated uncertainty were aggregated to 
the national scale (Supplementary Data 3) to align with reporting 
for SDG indicator 11.6.1 (ref. 24) and to the regional and global scales 
(Supplementary Data 4) to create a multiresolution global plastic 

emissions inventory (Fig. 1 and Extended Data Fig. 7). This inventory 
is the first-stage prerequisite for a second terrestrial transport model 
(not discussed further here), collectively named the ‘Spatio-temporal 
quantification of plastic pollution origins and transport’ model 
(SPOT). Although we acknowledge that upstream processes during 
the production, conversion and use phases result in a range of emis-
sions from plastics, they are outside the scope of our modelling. We 
also exclude textiles, sea-based sources of plastic pollution and waste 
electrical and electronic equipment. To improve comprehension of 
proportionality, the results are reported as the mean of all iterations 
(simulation runs). Numbers in square brackets are the 5th and 95th 
percentiles of all iterations. As there are no datasets with which to 
validate our model outputs, we took the same approach as Lau et al.9 
and carried out global sensitivity analysis to assess the influence of 
the model inputs and structure on its results (Supplementary Infor-
mation Section S.10).

We warn readers to consider the full uncertainty in our MFA results, 
particularly for municipal-scale outputs at which the ranges are gener-
ally much larger than national-scale or regional-scale aggregations. The 
origins of uncertainty in our model are discussed at length in Supple-
mentary Information Section S.9.2.2. We also explain in Supplementary 
Information Section S.9.1.1 a specific circumstance in which we decided 
not to quantify uncertainty for the uncontrolled disposal coefficient 
(tC3) owing to limitations of the quantile regression random forest 
predictive capability for that particular aspect of the system.

Data availability
Supplementary Data 1–6 are freely available as part of the Supple-
mentary Information and are available from Dryad: https://doi.org/ 
10.5061/dryad.8cz8w9gxb. Administrative boundaries used for the 
maps were sourced from GADM version 3.6 and are available from 
https://gadm.org/.

Code availability
All code, model inputs and outputs are available from Dryad: https://
doi.org/10.5061/dryad.8cz8w9gxb.
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Extended Data Fig. 1 | The point at which material passes from a contained 
to an uncontained state across the emission boundary is described here as 
an emission. Emissions originate from five core emission sources and from 

three system parts (generated, managed and mismanaged), each of which 
exhibit different containment characteristics.
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Extended Data Fig. 2 | Macroplastic emissions into the environment (debris and open burned) by municipality in mean kg cap−1 year−1 for the year 2020. 
Countries in the Global South have high per-capita emissions compared with those in the Global North.



Extended Data Fig. 3 | Macroplastic emissions into the environment (debris 
and open burned) by municipality for Latin America and the Caribbean in 
mean kg cap−1 year−1 for the year 2020. Hotspots for per-capita emissions 

include municipalities in Paraguay, Belize and Haiti, whereas municipalities in 
Uruguay and Chile have comparably lower emissions.
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Extended Data Fig. 4 | Macroplastic emissions into the environment (debris 
and open burned) by municipality for Africa in mean kg cap−1 year−1 for the 
year 2020. Per-capita emissions are high throughout the continent, with 

notable hotspots including municipalities in South Sudan, Angola and Namibia. 
Several megacities stand out as key hotspots, including Lagos (Nigeria), Juba 
(South Sudan) and Nouakchott (Mauritania).



Extended Data Fig. 5 | Macroplastic emissions into the environment (debris 
and open burned) by municipality for Eastern Asia and South-eastern Asia 
in mean kg cap−1 year−1 for the year 2020. Emissions on a per-capita basis are 
low for municipalities in HICs, such as Japan and South Korea, but high throughout 

much of South-eastern Asia, particularly Cambodia. Eastern China has low 
per-capita emissions owing to recent progress in solid waste management. 
However, emissions are marginally higher in Western China.



Article

Extended Data Fig. 6 | Macroplastic emissions into the environment (debris 
and open burned) by municipality for Central Asia, Western Asia and 
Southern Asia in mean kg cap−1 year−1 for the year 2020. Per-capita emissions 
are high throughout the region, with the exception of municipalities in HICs on 
the Arabian Peninsula, such as Saudi Arabia, Qatar and United Arab Emirates. 

Municipalities in Kyrgyzstan, Kazakhstan, Iraq, Jordan and Syria have relatively 
high per-capita emissions. Although India has the highest absolute emissions 
of all countries, on a per-capita basis, most of its municipalities have between 5 
and 10 kg cap−1 year−1.



Extended Data Fig. 7  | Graphical abstract for a local-to-global emissions 
inventory of macroplastic pollution. Municipal level data were cleaned, 
harmonized and used to train a quantile regression random forest machine 
learning model, which was used to generate core material flow data for 50,702 
municipalities worldwide. These data, combined with explanatory conceptual 
submodels, were used to populate and define flows in a probabilistic material 
flow analysis model (Monte Carlo) with 81 processes. The results are presented 

at municipal level, which showed a large variations in emissions, and then as 
aggregations at national, income category and global levels. The majority  
of emissions come from uncollected waste, whereas litter accounts for a 
comparatively small proportion worldwide. Of the 52.1 Mt year-1 (mean) of 
emissions produced, approximately 57% wt. are burned in open uncontrolled 
fires.
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